Copied to
clipboard

G = C62.20D6order 432 = 24·33

3rd non-split extension by C62 of D6 acting via D6/C2=S3

metabelian, supersoluble, monomial

Aliases: C62.20D6, (C3×C12)⋊1C12, C4⋊(C32⋊C12), He37(C4⋊C4), (C6×C12).9S3, (C6×C12).5C6, (C4×He3)⋊3C4, C12⋊Dic3⋊C3, (C3×C12)⋊1Dic3, (C3×C6).19D12, C6.12(C3×D12), C62.6(C2×C6), (C2×He3).5Q8, C6.6(C3×Dic6), (C3×C6).6Dic6, (C2×He3).20D4, C6.13(C6×Dic3), C12.4(C3×Dic3), C2.1(He34D4), C324(C4⋊Dic3), C2.2(He33Q8), (C22×He3).18C22, C324(C3×C4⋊C4), (C3×C6).9(C3×D4), (C2×C4×He3).6C2, (C3×C6).3(C3×Q8), (C3×C6).8(C2×C12), (C2×C6).40(S3×C6), C3.2(C3×C4⋊Dic3), (C2×C12).12(C3×S3), C2.4(C2×C32⋊C12), (C2×C3⋊Dic3).2C6, (C3×C6).9(C2×Dic3), (C2×C32⋊C12).2C2, (C2×C4).3(C32⋊C6), (C2×He3).29(C2×C4), C22.5(C2×C32⋊C6), SmallGroup(432,140)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.20D6
C1C3C32C3×C6C62C22×He3C2×C32⋊C12 — C62.20D6
C32C3×C6 — C62.20D6
C1C22C2×C4

Generators and relations for C62.20D6
 G = < a,b,c,d | a6=b6=1, c6=b3, d2=a3, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=b3c5 >

Subgroups: 397 in 107 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, C32, C32, Dic3, C12, C12, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C62, C62, C4⋊Dic3, C3×C4⋊C4, C2×He3, C6×Dic3, C2×C3⋊Dic3, C6×C12, C6×C12, C32⋊C12, C4×He3, C22×He3, C3×C4⋊Dic3, C12⋊Dic3, C2×C32⋊C12, C2×C4×He3, C62.20D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C4⋊C4, C3×S3, Dic6, D12, C2×Dic3, C2×C12, C3×D4, C3×Q8, C3×Dic3, S3×C6, C4⋊Dic3, C3×C4⋊C4, C32⋊C6, C3×Dic6, C3×D12, C6×Dic3, C32⋊C12, C2×C32⋊C6, C3×C4⋊Dic3, He33Q8, He34D4, C2×C32⋊C12, C62.20D6

Smallest permutation representation of C62.20D6
On 144 points
Generators in S144
(1 114 70 5 80 127)(2 111 67 6 77 124)(3 120 64 7 74 121)(4 117 61 8 83 130)(9 73 128 37 119 71)(10 82 125 38 116 68)(11 79 122 39 113 65)(12 76 131 40 110 62)(13 144 102 17 92 57)(14 141 99 18 89 54)(15 138 108 19 86 51)(16 135 105 20 95 60)(21 85 58 32 137 103)(22 94 55 29 134 100)(23 91 52 30 143 97)(24 88 49 31 140 106)(25 133 107 35 93 50)(26 142 104 36 90 59)(27 139 101 33 87 56)(28 136 98 34 96 53)(41 115 63 47 81 132)(42 112 72 48 78 129)(43 109 69 45 75 126)(44 118 66 46 84 123)
(1 42 40 3 44 38)(2 43 37 4 41 39)(5 48 12 7 46 10)(6 45 9 8 47 11)(13 26 31 15 28 29)(14 27 32 16 25 30)(17 36 24 19 34 22)(18 33 21 20 35 23)(49 51 53 55 57 59)(50 52 54 56 58 60)(61 63 65 67 69 71)(62 64 66 68 70 72)(73 83 81 79 77 75)(74 84 82 80 78 76)(85 95 93 91 89 87)(86 96 94 92 90 88)(97 99 101 103 105 107)(98 100 102 104 106 108)(109 119 117 115 113 111)(110 120 118 116 114 112)(121 123 125 127 129 131)(122 124 126 128 130 132)(133 143 141 139 137 135)(134 144 142 140 138 136)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 16 5 20)(2 15 6 19)(3 14 7 18)(4 13 8 17)(9 36 37 26)(10 35 38 25)(11 34 39 28)(12 33 40 27)(21 42 32 48)(22 41 29 47)(23 44 30 46)(24 43 31 45)(49 65 106 122)(50 64 107 121)(51 63 108 132)(52 62 97 131)(53 61 98 130)(54 72 99 129)(55 71 100 128)(56 70 101 127)(57 69 102 126)(58 68 103 125)(59 67 104 124)(60 66 105 123)(73 86 119 138)(74 85 120 137)(75 96 109 136)(76 95 110 135)(77 94 111 134)(78 93 112 133)(79 92 113 144)(80 91 114 143)(81 90 115 142)(82 89 116 141)(83 88 117 140)(84 87 118 139)

G:=sub<Sym(144)| (1,114,70,5,80,127)(2,111,67,6,77,124)(3,120,64,7,74,121)(4,117,61,8,83,130)(9,73,128,37,119,71)(10,82,125,38,116,68)(11,79,122,39,113,65)(12,76,131,40,110,62)(13,144,102,17,92,57)(14,141,99,18,89,54)(15,138,108,19,86,51)(16,135,105,20,95,60)(21,85,58,32,137,103)(22,94,55,29,134,100)(23,91,52,30,143,97)(24,88,49,31,140,106)(25,133,107,35,93,50)(26,142,104,36,90,59)(27,139,101,33,87,56)(28,136,98,34,96,53)(41,115,63,47,81,132)(42,112,72,48,78,129)(43,109,69,45,75,126)(44,118,66,46,84,123), (1,42,40,3,44,38)(2,43,37,4,41,39)(5,48,12,7,46,10)(6,45,9,8,47,11)(13,26,31,15,28,29)(14,27,32,16,25,30)(17,36,24,19,34,22)(18,33,21,20,35,23)(49,51,53,55,57,59)(50,52,54,56,58,60)(61,63,65,67,69,71)(62,64,66,68,70,72)(73,83,81,79,77,75)(74,84,82,80,78,76)(85,95,93,91,89,87)(86,96,94,92,90,88)(97,99,101,103,105,107)(98,100,102,104,106,108)(109,119,117,115,113,111)(110,120,118,116,114,112)(121,123,125,127,129,131)(122,124,126,128,130,132)(133,143,141,139,137,135)(134,144,142,140,138,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,16,5,20)(2,15,6,19)(3,14,7,18)(4,13,8,17)(9,36,37,26)(10,35,38,25)(11,34,39,28)(12,33,40,27)(21,42,32,48)(22,41,29,47)(23,44,30,46)(24,43,31,45)(49,65,106,122)(50,64,107,121)(51,63,108,132)(52,62,97,131)(53,61,98,130)(54,72,99,129)(55,71,100,128)(56,70,101,127)(57,69,102,126)(58,68,103,125)(59,67,104,124)(60,66,105,123)(73,86,119,138)(74,85,120,137)(75,96,109,136)(76,95,110,135)(77,94,111,134)(78,93,112,133)(79,92,113,144)(80,91,114,143)(81,90,115,142)(82,89,116,141)(83,88,117,140)(84,87,118,139)>;

G:=Group( (1,114,70,5,80,127)(2,111,67,6,77,124)(3,120,64,7,74,121)(4,117,61,8,83,130)(9,73,128,37,119,71)(10,82,125,38,116,68)(11,79,122,39,113,65)(12,76,131,40,110,62)(13,144,102,17,92,57)(14,141,99,18,89,54)(15,138,108,19,86,51)(16,135,105,20,95,60)(21,85,58,32,137,103)(22,94,55,29,134,100)(23,91,52,30,143,97)(24,88,49,31,140,106)(25,133,107,35,93,50)(26,142,104,36,90,59)(27,139,101,33,87,56)(28,136,98,34,96,53)(41,115,63,47,81,132)(42,112,72,48,78,129)(43,109,69,45,75,126)(44,118,66,46,84,123), (1,42,40,3,44,38)(2,43,37,4,41,39)(5,48,12,7,46,10)(6,45,9,8,47,11)(13,26,31,15,28,29)(14,27,32,16,25,30)(17,36,24,19,34,22)(18,33,21,20,35,23)(49,51,53,55,57,59)(50,52,54,56,58,60)(61,63,65,67,69,71)(62,64,66,68,70,72)(73,83,81,79,77,75)(74,84,82,80,78,76)(85,95,93,91,89,87)(86,96,94,92,90,88)(97,99,101,103,105,107)(98,100,102,104,106,108)(109,119,117,115,113,111)(110,120,118,116,114,112)(121,123,125,127,129,131)(122,124,126,128,130,132)(133,143,141,139,137,135)(134,144,142,140,138,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,16,5,20)(2,15,6,19)(3,14,7,18)(4,13,8,17)(9,36,37,26)(10,35,38,25)(11,34,39,28)(12,33,40,27)(21,42,32,48)(22,41,29,47)(23,44,30,46)(24,43,31,45)(49,65,106,122)(50,64,107,121)(51,63,108,132)(52,62,97,131)(53,61,98,130)(54,72,99,129)(55,71,100,128)(56,70,101,127)(57,69,102,126)(58,68,103,125)(59,67,104,124)(60,66,105,123)(73,86,119,138)(74,85,120,137)(75,96,109,136)(76,95,110,135)(77,94,111,134)(78,93,112,133)(79,92,113,144)(80,91,114,143)(81,90,115,142)(82,89,116,141)(83,88,117,140)(84,87,118,139) );

G=PermutationGroup([[(1,114,70,5,80,127),(2,111,67,6,77,124),(3,120,64,7,74,121),(4,117,61,8,83,130),(9,73,128,37,119,71),(10,82,125,38,116,68),(11,79,122,39,113,65),(12,76,131,40,110,62),(13,144,102,17,92,57),(14,141,99,18,89,54),(15,138,108,19,86,51),(16,135,105,20,95,60),(21,85,58,32,137,103),(22,94,55,29,134,100),(23,91,52,30,143,97),(24,88,49,31,140,106),(25,133,107,35,93,50),(26,142,104,36,90,59),(27,139,101,33,87,56),(28,136,98,34,96,53),(41,115,63,47,81,132),(42,112,72,48,78,129),(43,109,69,45,75,126),(44,118,66,46,84,123)], [(1,42,40,3,44,38),(2,43,37,4,41,39),(5,48,12,7,46,10),(6,45,9,8,47,11),(13,26,31,15,28,29),(14,27,32,16,25,30),(17,36,24,19,34,22),(18,33,21,20,35,23),(49,51,53,55,57,59),(50,52,54,56,58,60),(61,63,65,67,69,71),(62,64,66,68,70,72),(73,83,81,79,77,75),(74,84,82,80,78,76),(85,95,93,91,89,87),(86,96,94,92,90,88),(97,99,101,103,105,107),(98,100,102,104,106,108),(109,119,117,115,113,111),(110,120,118,116,114,112),(121,123,125,127,129,131),(122,124,126,128,130,132),(133,143,141,139,137,135),(134,144,142,140,138,136)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,16,5,20),(2,15,6,19),(3,14,7,18),(4,13,8,17),(9,36,37,26),(10,35,38,25),(11,34,39,28),(12,33,40,27),(21,42,32,48),(22,41,29,47),(23,44,30,46),(24,43,31,45),(49,65,106,122),(50,64,107,121),(51,63,108,132),(52,62,97,131),(53,61,98,130),(54,72,99,129),(55,71,100,128),(56,70,101,127),(57,69,102,126),(58,68,103,125),(59,67,104,124),(60,66,105,123),(73,86,119,138),(74,85,120,137),(75,96,109,136),(76,95,110,135),(77,94,111,134),(78,93,112,133),(79,92,113,144),(80,91,114,143),(81,90,115,142),(82,89,116,141),(83,88,117,140),(84,87,118,139)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D4E4F6A6B6C6D···6I6J···6R12A12B12C12D12E···12T12U···12AB
order12223333334444446666···66···61212121212···1212···12
size111123366622181818182223···36···622226···618···18

62 irreducible representations

dim111111112222222222222266666
type+++++--+-++-+-+
imageC1C2C2C3C4C6C6C12S3D4Q8Dic3D6C3×S3Dic6D12C3×D4C3×Q8C3×Dic3S3×C6C3×Dic6C3×D12C32⋊C6C32⋊C12C2×C32⋊C6He33Q8He34D4
kernelC62.20D6C2×C32⋊C12C2×C4×He3C12⋊Dic3C4×He3C2×C3⋊Dic3C6×C12C3×C12C6×C12C2×He3C2×He3C3×C12C62C2×C12C3×C6C3×C6C3×C6C3×C6C12C2×C6C6C6C2×C4C4C22C2C2
# reps121244281112122222424412122

Matrix representation of C62.20D6 in GL8(𝔽13)

10000000
01000000
000000120
000000012
001200000
000120000
000012000
000001200
,
120000000
012000000
00010000
001210000
00000100
000012100
00000001
000000121
,
63000000
103000000
00370000
006100000
00007300
0000101000
00000033
000000106
,
36000000
310000000
00800000
00850000
00000500
00005000
00000058
00000008

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1],[6,10,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,3,6,0,0,0,0,0,0,7,10,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,10,0,0,0,0,0,0,0,0,3,10,0,0,0,0,0,0,3,6],[3,3,0,0,0,0,0,0,6,10,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,8,8] >;

C62.20D6 in GAP, Magma, Sage, TeX

C_6^2._{20}D_6
% in TeX

G:=Group("C6^2.20D6");
// GroupNames label

G:=SmallGroup(432,140);
// by ID

G=gap.SmallGroup(432,140);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,176,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽